满分5 > 初中数学试题 >

如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D....

如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.

manfen5.com 满分网
(1)利用待定系数法,将点A,B的坐标代入解析式即可求得; (2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2, 可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1; (3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想. 【解析】 (1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2), ∴, 解得, ∴所求抛物线的解析式为y=x2-3x+2;(2分) (2)∵A(1,0),B(0,2), ∴OA=1,OB=2, 可得旋转后C点的坐标为(3,1),(3分) 当x=3时,由y=x2-3x+2得y=2, 可知抛物线y=x2-3x+2过点(3,2), ∴将原抛物线沿y轴向下平移1个单位后过点C. ∴平移后的抛物线解析式为:y=x2-3x+1;(5分) (3)∵点N在y=x2-3x+1上,可设N点坐标为(x,x2-3x+1), 将y=x2-3x+1配方得y=(x-)2-, ∴其对称轴为直线x=.(6分) ①0≤x≤时,如图①, ∵, ∴ ∵x=1, 此时x2-3x+1=-1, ∴N点的坐标为(1,-1).(8分) ②当时,如图②, 同理可得, ∴x=3, 此时x2-3x+1=1, ∴点N的坐标为(3,1). ③当x<0时,由图可知,N点不存在, ∴舍去. 综上,点N的坐标为(1,-1)或(3,1).(10分)
复制答案
考点分析:
相关试题推荐
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.
manfen5.com 满分网
查看答案
已知:二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出当y大于0时x的取值范围;
(3)x为何值时,y随x的增大而增大;
(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在△ABC中,∠C=90°,AC=3,BC=4.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连接DE.
(1)过点E作直线EF交AC边于点F,当EF=AF时,求证:直线EF为半圆O的切线;
(2)当BD=3时,求线段DE的长.
查看答案
已知:如图,在直角坐标系中,⊙O1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A(3,0)、B(0,4).设△BOA的内切圆的直径为d,求d+AB的值.

manfen5.com 满分网 查看答案
如图,某船向正东方向航行,在A处望见小岛C在北偏东60°方向,前进8海里到B点,测得该岛在北偏东30°方向.已知该岛5海里内有暗礁,若该船继续向东航行,有无触礁危险?请通过计算说明理由.(参考数据:manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.