(1)由于tanB=cos∠DAC,所以根据正切和余弦的概念证明AC=BD;
(2)设AD=12k,AC=13k,然后利用题目已知条件即可解直角三角形.
(1)证明:∵AD是BC上的高,
∴AD⊥BC,
∴∠ADB=90°,∠ADC=90°,
在Rt△ABD和Rt△ADC中,
∵tanB=,cos∠DAC=,
又∵tanB=cos∠DAC,
∴=,
∴AC=BD.
(2)【解析】
在Rt△ADC中,,
故可设AD=12k,AC=13k,
∴CD==5k,
∵BC=BD+CD,又AC=BD,
∴BC=13k+5k=18k
由已知BC=12,
∴18k=12,
∴k=,
∴AD=12k=12×=8.