过D作DE⊥AC与E点,设BC=a,则AC=4a,根据等角的余角相等得到∠1=∠3,易证得△ABC≌△DAE,所以AE=BC=a,DE=AC=4a,得到EC=AC-AE=4a-a=3a,在Rt△DEC中,根据勾股定理得到DC=5a,所以有x=5a,即a=x;根据四边形ABCD的面积y=三角形ABC的面积+三角形ACD的面积,即可得到y=×a×4a+×4a×4a=10a2=x2.
【解析】
过D作DE⊥AC于E点,如图,
设BC=a,则AC=4a,
∵∠BAD=90°,∠AED=90°,
∴∠1=∠3,
而∠ACB=90°,AB=AD,
∴△ABC≌△DAE,
∴AE=BC=a,DE=AC=4a,
∴EC=AC-AE=4a-a=3a,
在Rt△DEC中,DC=5a,
∴x=5a,即a=x,
又∵四边形ABCD的面积y=三角形ABC的面积+三角形ACD的面积,
∴y=×a×4a+×4a×4a=10a2=x2.
故答案为:y=.