考点分析:
相关试题推荐
如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
查看答案
某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.
(1)求售价为70元时的销售量及销售利润;
(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;
(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?
查看答案
如图,有一个抛物线型拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中,求此抛物线的函数关系式.
查看答案
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.
查看答案
如图△ABC是⊙O内接三角形,点C是优孤AB上一点(点C与A、B不重合)设∠OAB=α,∠C=β.
(1)当α=36°时,求β的度数;
(2)猜想α与β之间的关系,并给予证明.
查看答案