依题意可以得到△ABE∽△ECD∽△DEA,∠B=∠C=∠D=90°,利用相似三角形的性质可以推出BE:CD=AB:EC,而四边形ABCD为矩形,可以得到AB=CD,所以AB2=BE•EC,又CE=3BE,可以得到AB=BE,由此可以求出BE,CB,最后就可以求出面积.
【解析】
∵形状相同、大小不等的三块直角三角形木板,
∴△ABE∽△ECD∽△DEA,∠B=∠C=∠AED=90°,
∴BE:CD=AB:EC,
∴四边形ABCD为矩形
∴AB=CD,
∴AB2=BE•EC,
∵CE=3BE,
∴AB=BE,
∵AE=4,
∴BE=2,AB=2,
∴BC=BE+CE=4BE=8,
∴这个四边形的面积是S=AB×BC=2×8=16.
故填:16.