如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿AC边向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动.
(1)若P,Q两点同时出发,几秒后可使△PQC的面积为8cm
2?
(2)若P,Q两点同时出发,几秒后PQ的长度为3
cm.
查看答案
在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y.
(1)求y与x的函数表达式;
(2)当x为何值时,y有最大值,最大值是多少?
查看答案
某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台.假设这种品牌的彩电每台降价100x(x为正整数)元,每天可多售出3x台.(注:利润=销售价-进价)
(1)设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式;
(2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高?
查看答案
如图,AB为⊙O直径,CD为弦,且CD⊥AB,垂足为H.
(1)∠OCD的平分线CE交⊙O于E,连接OE.求证:E为
的中点;
(2)如果⊙O的半径为1,CD=
.
①求O到弦AC的距离;
②填空:此时圆周上存在______个点到直线AC的距离为
.
查看答案
如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6cm,求直径AB的长.
查看答案