连接EF,由于EF分别是ADBC上的中点,所以EF∥AB∥CD,而四边形ABCD是长方形,所以四边形EFCD是矩形,再过M作MQ⊥EF,同样也垂直于CD,再利用GH=DC,可得相似比,那么可求出NM,MQ,以及EF,CD的长,再利用三角形的面积公式可求出△EFM和△MGH的面积,用矩形EFCD的面积减去△EFM的面积减去△GHM的面积,即可求阴影部分面积.
【解析】
连接EF,过M作MQ⊥EF,交EF于N,交CD于Q,
∵△EFM∽△HGM,相似比是EF:GH=2:1,
∴MN:MQ=EF:GH=2:1,
又∵NQ=•BC=6,
∴MN=4,MQ=2,
∴S△EFG=×10×4=20,
∴S△GHM=×5×2=5,S矩形EFCD=6×10=60,
∴S阴影=60-20-5=35.
故答案为:35.