满分5 > 初中数学试题 >

如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再...

如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少;
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;
(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.
manfen5.com 满分网
(1)可设正方形的边长为x,可根据矩形的面积公式,用x表示出长方体盒子底面的长和宽,得出方程求出x的值. (2)同(1)先用x表示出不同侧面的长,然后根据矩形的面积将4个侧面的面积相加,得出关于侧面积和正方形边长的函数式,然后根据函数的性质和自变量的取值范围来得出侧面积的最大值. (3)方法同(2)只不过要分两种情况进行讨论,一种是在矩形的长边剪去2个小长方形(如图1),一种是在矩形的宽上剪去两个小长方形(如图2). 【解析】 (1)设正方形的边长为xcm,则(10-2x)(8-2x)=48. 即x2-9x+8=0. 解得x1=8(不合题意,舍去),x2=1. ∴剪去的正方形的边长为1cm. (2)有侧面积最大的情况. 设正方形的边长为xcm,盒子的侧面积为ycm2, 则y与x的函数关系式为: y=2(10-2x)x+2(8-2x)x. 即y=-8x2+36x.(0<x<4) 改写为y=-8(x-)2+. ∴当x=2.25时,y最大=40.5. 即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2. (3)有侧面积最大的情况. 设正方形的边长为xcm,盒子的侧面积为ycm2. 若按图1所示的方法剪折,则y与x的函数关系式为: y=2(8-2x)x+2••x. 即y=-6(x-)2+. ∴当x=时,y最大=. 若按图2所示的方法剪折,则y与x的函数关系式为: y=2(10-2x)x+2••x. 即y=-6(x-)2+. ∴当x=时,y最大=. 比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),
C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

manfen5.com 满分网 查看答案
如图,直线y=k1x+b与反比例函数manfen5.com 满分网(x>0)的图象交于A(1,6),B(a,3)两点.
(1)求k1、k2的值.
(2)直接写出manfen5.com 满分网时x的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.

manfen5.com 满分网 查看答案
某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示.
(1)每天的销售数量m(件)与每件的销售价格x(元)的函数表达式是______
(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;
(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?
manfen5.com 满分网
查看答案
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?
查看答案
如图,已知反比例函数manfen5.com 满分网与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).
(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.