过C作⊙O的直径CD,那么∠AOD为△AOC的外角,即∠AOD=∠A+∠ACO;同理可得,∠BOD=∠B+∠BCO;两式相加,可得∠AOB-∠ACB=∠A+∠B;已知∠AOB=80°,易知∠ACB=40°;由此可求出∠A、∠B的度数和.
【解析】
过C作⊙O的直径CD,交⊙O于D点;
则:∠AOD=∠A+∠ACO;∠BOD=∠B+∠BCO;
∵∠AOD+∠BOD=∠A+∠ACO+∠B+∠BCO,
即∠AOB=∠A+∠B+∠ACB;
又∵∠AOB=80°,∠ACB=40°;
∴∠A+∠B=80°-40°=40°.