小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:
方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…
(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).
(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.
(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为
(如图(3)),试求EG的长度.
考点分析:
相关试题推荐
如图,在△ABC,点D、E分别在AB、AC上,连接DE并延长交BC的延长线于点F,连接DC、BE,若∠BDE+∠BCE=180°.
(1)请写出图中的两对相似三角形;(不另外添加字母和线).
(2)任选其中一对进行证明.
查看答案
已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为
.
查看答案
在△ABC中,D、E分别是AB、AC的中点连接DE、BE、CD,且BE与CD交于点O,若△DEO的面积S
△DEO=1,则△ABC的面积S
△ABC=
.
查看答案
如图,在△ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF,D为BF的中点,AE:AF的值为
.
查看答案
如图,当四边形PABN的周长最小时,a=
.
查看答案