满分5 > 初中数学试题 >

阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直...

阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=manfen5.com 满分网ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)在(2)的条件下,设抛物线的对称轴分别交AB、x轴于点D、M,连接PA、PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(4)在(2)的条件下,设P点的横坐标为x,△PAB的铅垂高为h、面积为S,请分别写出h和S关于x的函数关系式.

manfen5.com 满分网
(1)由已知条件得出图象顶点坐标,由顶点式求出 (2)利用待定系数法求出直线解析式, (3)找出三角形的底与高,即可求出三角形的面积, (4)用x表示出铅垂高为h,即可解决. 【解析】 (1)设抛物线的解析式为:y1=a(x-1)2+4 把A(3,0)代入解析式求得a=-1 所以y1=-(x-1)2+4=-x2+2x+3 (2)设直线AB的解析式为:y2=kx+b 由y1=-x2+2x+3求得B点的坐标为(0,3 把A(3,0),B(0,3)代入y2=kx+b中 解得:k=-1,b=3 所以y2=-x+3 (3)因为C点坐标为(1,4) 所以当x=1时,y1=4,y2=2 所以CD=4-2=2 (平方单位) (4)假设存在符合条件的点P,设P点的横坐标为x,△PAB的铅垂高为h, 则h=y1-y2=(-x2+2x+3)-(-x+3)=-x2+3x S=.
复制答案
考点分析:
相关试题推荐
利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x2+x-3=0,也可以这样求【解析】
在平面直角坐标系中画出抛物线y=______和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-manfen5.com 满分网的图象(如图所示),利用图象求方程manfen5.com 满分网-x+3=0的近似解.(结果保留两个有效数字)

manfen5.com 满分网 查看答案
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
查看答案
如图所示是龙游文昌大桥,桥身横跨灵山江,桥下冬暖夏凉,常有船只停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处18m的渔船,试探索此船能否开到桥下?说明理由.
manfen5.com 满分网
查看答案
如图,一次函数y1=kx+b的图象与反比例函数y2=manfen5.com 满分网的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,
(1)求反比例函数y2=manfen5.com 满分网和一次函数y1=kx+b的表达式;
(2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,反比例函数manfen5.com 满分网的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.
(1)求该反比例函数解析式;
(2)当△ABC面积为2时,求点B的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.