如图中的图案是由一个怎样的基本图形经过旋转、轴对称和平移得到的呢?
考点分析:
相关试题推荐
已知图中A,B分别表示正方形网格上的两个轴对称图形(阴影部分),其面积分别记为S
1,S
2(网格中最小的正方形的面积为一个单位面积),请你观察并回答问题.
(1)求s
1和s
2的值;
(2)请你在图C中的网格上画一个面积为8个平方单位的轴对称图形.
查看答案
阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S
△ABC=
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)在(2)的条件下,设抛物线的对称轴分别交AB、x轴于点D、M,连接PA、PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S
△CAB;
(4)在(2)的条件下,设P点的横坐标为x,△PAB的铅垂高为h、面积为S,请分别写出h和S关于x的函数关系式.
查看答案
利用图象解一元二次方程x
2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x
2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x
2+x-3=0,也可以这样求【解析】
在平面直角坐标系中画出抛物线y=______和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-
的图象(如图所示),利用图象求方程
-x+3=0的近似解.(结果保留两个有效数字)
查看答案
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
查看答案
如图所示是龙游文昌大桥,桥身横跨灵山江,桥下冬暖夏凉,常有船只停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处18m的渔船,试探索此船能否开到桥下?说明理由.
查看答案