连接O1E,O2D,O1O2.则阴影部分的面积=(直角三角形ABC的面积-扇形O2PD的面积-三角形O2CD的面积-扇形O1AE的面积-三角形O1BE的面积)+(扇形O2CD的面积-三角形O2CD的面积+扇形O1BE的面积-三角形O1BE的面积).根据等腰直角三角形的性质和同圆的半径相等,知三角形O2CD和三角形O1BE都是等腰直角三角形.设半圆O2的半径是x,根据勾股定理列方程即可求解.
【解析】
连接O1E,O2D,O1O2.
设半圆O2的半径是x,根据勾股定理,得
,
解得:x=.
∵△ABC是等腰直角三角形,
∴∠B=∠C=45°.
∴∠O2DC=∠C=45°,∠O1EB=∠B=45°.
∴∠CO2D=∠EO1B=90°.
∴阴影部分的面积=直角三角形ABC的面积-2(直角三角形CO2D的面积+直角三角形BO1E的面积)
=-2(+×)=.