满分5 > 初中数学试题 >

如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(...

如图,已知抛物线y=manfen5.com 满分网+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
manfen5.com 满分网
(1)由于抛物线的解析式中只有两个待定系数,因此只需将A、C两点的坐标代入抛物线中即可求出二次函数的解析式. (2)根据A、C的坐标,易求得直线AC的解析式,可设D点的横坐标,根据直线AC的解析式可表示出E点的纵坐标,即可得到DE的长,以DE为底,D点横坐标为高即可得到△CDE的面积,从而得到关于△CDE的面积与D点横坐标的函数关系式,根据所得函数的性质即可求出△CDE的面积最大值及对应的D点坐标. (3)根据抛物线的解析式,可求出B点的坐标,进而能得到直线BC的解析式,设出点P的横坐标,根据直线BC的解析式表示出P点的纵坐标,然后利用坐标系两点间的距离公式分别表示出△ACP三边的长,从而根据:①AP=CP、②AC=AP、③CP=AC,三种不同等量关系求出符合条件的P点坐标. 【解析】 (1)由于抛物线经过A(2,0),C(0,-1), 则有:, 解得; ∴抛物线的解析式为:y=-x-1. (2)∵A(2,0),C(0,-1), ∴直线AC:y=x-1; 设D(x,0),则E(x,x-1), 故DE=0-(x-1)=1-x; ∴△DCE的面积:S=DE×|xD|=×(1-x)×x=-x2+x=-(x-1)2+, 因此当x=1, 即D(1,0)时,△DCE的面积最大,且最大值为. (3)由(1)的抛物线解析式易知:B(-1,0), 可求得直线BC的解析式为:y=-x-1; 设P(x,-x-1),因为A(2,0),C(0,-1),则有: AP2=(x-2)2+(-x-1)2=2x2-2x+5, AC2=5,CP2=x2+(-x-1+1)2=2x2; ①当AP=CP时,AP2=CP2,有: 2x2-2x+5=2x2,解得x=2.5, ∴P1(2.5,-3.5); ②当AP=AC时,AP2=AC2,有: 2x2-2x+5=5,解得x=0(舍去),x=1, ∴P2(1,-2); ③当CP=AC时,CP2=AC2,有: 2x2=5,解得x=±, ∴P3(,--1),P4(-,-1); 综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,-3.5)、P2(1,-2)、P3(,--1)、P4(-,-1).
复制答案
考点分析:
相关试题推荐
某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.
(1)假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x间的函数关系式,并注明x的取值范围.
(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)
查看答案
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2manfen5.com 满分网,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2-6x-k2=0(k为常数).
(1)求证:方程有两个不相等的实数根;
(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.

manfen5.com 满分网 查看答案
一次函数y=x-3的图象与x轴,y轴分别交于点A,B.一个二次函数y=x2+bx+c的图象经过点A,B.
(1)求点A,B的坐标,并画出一次函数y=x-3的图象;
(2)求二次函数的解析式及它的最小值.
查看答案
如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于6的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.