满分5 > 初中数学试题 >

如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=.设直...

如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=manfen5.com 满分网.设直线AC与直线x=4交于点E.
(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.

manfen5.com 满分网
(1)设直线x=4与x轴的交点为F,易证得△ABC∽△AFE,根据相似三角形得到的比例线段即可求出EF的长,也就得到了E点的坐标;可用待定系数法求出抛物线的解析式,然后将E点坐标代入其中进行判断即可; (2)过M作y轴的平行线,交直线CN于P,交x轴于Q;根据抛物线的解析式可求出N点的坐标,进而可求出直线CN的解析式,设出Q点的坐标,即可根据抛物线和直线的解析式求出MP的长;以MP为底,C、N的横坐标差的绝对值为高即可得到△CMN的面积,由此可求出关于△CMN的面积与Q点横坐标的函数关系式,根据函数的性质即可得到△CMN的最大面积. 【解析】 (1)设抛物线的函数关系式为:y=a(x-4)2+m, ∵抛物线过C与原点O, ∴, 解得:, ∴所求抛物线的函数关系式为:y=-(x-4)2+, 设直线AC的函数关系式为y=kx+b, , 解得:. ∴直线AC的函数关系式为:y=x+, ∴点E的坐标为(4,) ∴此抛物线过E点. (2)过M作MQ∥y轴,交x轴于Q,交直线CN于P; 易知:N(8,0),C(2,2); 可得直线CN的解析式为y=-x+; 设点Q的坐标为(m,0),则P(m,-m+),M(m,-m2+m); ∴MP=-m2+m-(-m+)=-m2+m-; ∴S=S△CMN=S△CPM+S△MNP=MP•|xM-xC|+MP•|xN-xM|=MP•|xN-xC|=×(-m2+m-)×6=-m2+5m-8; 即S=-(m-5)2+(2<m<8); ∵2<5<8, ∴当m=5时,Smax=; 即△CMN的最大面积为.
复制答案
考点分析:
相关试题推荐
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.
若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=manfen5.com 满分网x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w(元)(利润=销售额-成本-广告费).
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳manfen5.com 满分网x2元的附加费,设月利润为w(元)(利润=销售额-成本-附加费).
(1)当x=1000时,y=______元/件,w=______元;
(2)分别求出w,w与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(manfen5.com 满分网).
查看答案
如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,manfen5.com 满分网,求AD的长.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2-6x-k2=0(k为常数).
(1)求证:方程有两个不相等的实数根;
(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.

manfen5.com 满分网 查看答案
已知二次函数y=-x2+4x.
(1)用配方法把该函数化为y=a(x-h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;
(2)函数图象与x轴的交点坐标.
查看答案
有三张背面完全相同的卡片,它们的正面分别写上manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张.
(1)直接写出小丽取出的卡片恰好是manfen5.com 满分网的概率;
(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.