先连接BD,因为四边形ABCD是菱形且∠BAD=60°,所以△ABD是等边三角形,由于菱形的对角线互相垂直平分,所以点D是点B关于AC的对称点,AD=BD,连接MD,由等边三角形的性质可知DM⊥AB,再根据勾股定理即可求出BD的长.
【解析】
先连接BD,交AC于点P′,连接BE,
∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,BE=DE,
∵∠BAD=60°,
∴△ABD是等边三角形,点D是点B关于AC的对称点,则BP′=DP′,
∴当P于P′重合时PM+PB的值最小,最小值为MD,
∵M是AB的中点,△ABD是等边三角形,
∴DM⊥AB,
∴DM===,即PM+PB的最小值为.
故答案为:.