满分5 > 初中数学试题 >

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y...

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.

manfen5.com 满分网
(1)已知了抛物线的解析式,当y=0时可求出A,B两点的坐标,当x=0时,可求出C点的坐标.根据对称轴x=-可得出对称轴的解析式. (2)PF的长就是当x=m时,抛物线的值与直线BC所在一次函数的值的差.可先根据B,C的坐标求出BC所在直线的解析式,然后将m分别代入直线BC和抛物线的解析式中,求得出两函数的值的差就是PF的长. 根据直线BC的解析式,可得出E点的坐标,根据抛物线的解析式可求出D点的坐标,然后根据坐标系中两点的距离公式,可求出DE的长,然后让PF=DE,即可求出此时m的值. (3)可将三角形BCF分成两部分来求: 一部分是三角形PFC,以PF为底边,以P的横坐标为高即可得出三角形PFC的面积. 一部分是三角形PFB,以PF为底边,以P、B两点的横坐标差的绝对值为高,即可求出三角形PFB的面积. 然后根据三角形BCF的面积=三角形PFC的面积+三角形PFB的面积,可求出关于S、m的函数关系式. 【解析】 (1)A(-1,0),B(3,0),C(0,3). 抛物线的对称轴是:直线x=1. (2)①设直线BC的函数关系式为:y=kx+b. 把B(3,0),C(0,3)分别代入得: 解得:k=-1,b=3. 所以直线BC的函数关系式为:y=-x+3. 当x=1时,y=-1+3=2, ∴E(1,2). 当x=m时,y=-m+3, ∴P(m,-m+3). 在y=-x2+2x+3中,当x=1时,y=4. ∴D(1,4) 当x=m时,y=-m2+2m+3, ∴F(m,-m2+2m+3) ∴线段DE=4-2=2, 线段PF=-m2+2m+3-(-m+3)=-m2+3m ∵PF∥DE, ∴当PF=ED时,四边形PEDF为平行四边形. 由-m2+3m=2,解得:m1=2,m2=1(不合题意,舍去). 因此,当m=2时,四边形PEDF为平行四边形. ②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得:OB=OM+MB=3. ∵S=S△BPF+S△CPF 即S=PF•BM+PF•OM=PF•(BM+OM)=PF•OB. ∴S=×3(-m2+3m)=-m2+m(0≤m≤3).
复制答案
考点分析:
相关试题推荐
某校八年级学生小丽,小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果以13元/千克的价格销售,那么每天可获取利润750元.
小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?[利润=销售量×(销售单价-进价)].
(3)一段时间后,发现这种水果每天的销售量均低于225千克,则此时该超市销售这种水果每天获取的利润最大是多少?
查看答案
我们把两个能够互相重合的图形成为全等形.manfen5.com 满分网
(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;
(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出.
查看答案
上海世博会门票价格如表所示:
门票价格一览表
指定日普通票200元
平日优惠票100元
某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.
(1)有多少种购票方案?列举所有可能结果;
(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.
查看答案
如图,AB是⊙O的直径,C是manfen5.com 满分网的中点,CE⊥AB于E,BD交CE于点F.
(1)求证:CF﹦BF;
(2)若CD﹦6,AC﹦8,则⊙O的半径为______,CE的长是______

manfen5.com 满分网 查看答案
已知一次函数y1=ax+b的图象与反比例函数y2=manfen5.com 满分网的图象相交于A、B两点,坐标分别为(-2,4)、(4,-2).
(1)求两个函数的解析式;
(2)结合图象写出y1<y2时,x的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.