满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交...

如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

manfen5.com 满分网
(1)分析抛物线过两点,由待定系数求出抛物线解析式; (2)根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标; (3)有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出tan∠PBF,再设出P点坐标,根据几何关系解出P点坐标;法二过点D作BD的垂线交直线PB于点Q,过点D作DH⊥x轴于H.过Q点作QG⊥DH于G,由角的关系,得到△QDG≌△DBH,再求出直线BP的解析式,解出方程组从而解出P点坐标. 【解析】 (1)∵抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点, ∴, 解得, ∴抛物线的解析式为y=-x2+3x+4; (2)∵点D(m,m+1)在抛物线上, ∴m+1=-m2+3m+4, 即m2-2m-3=0 ∴m=-1或m=3 ∵点D在第一象限 ∴点D的坐标为(3,4) 由(1)知OC=OB ∴∠CBA=45° 设点D关于直线BC的对称点为点E ∵C(0,4) ∴CD∥AB,且CD=3 ∴∠ECB=∠DCB=45° ∴E点在y轴上,且CE=CD=3 ∴OE=1 ∴E(0,1) 即点D关于直线BC对称的点的坐标为(0,1); (3)方法一:作PF⊥AB于F,DE⊥BC于E, 由(1)有:OB=OC=4 ∴∠OBC=45° ∵∠DBP=45° ∴∠CBD=∠PBA ∵C(0,4),D(3,4) ∴CD∥OB且CD=3 ∴∠DCE=∠CBO=45° ∴DE=CE= ∵OB=OC=4 ∴BC=4 ∴BE=BC-CE= ∴tan∠PBF=tan∠CBD= 设PF=3t,则BF=5t,OF=5t-4 ∴P(-5t+4,3t) ∵P点在抛物线上 ∴3t=-(-5t+4)2+3(-5t+4)+4 ∴t=0(舍去)或t= ∴P(,); 方法二:过点D作BD的垂线交直线PB于点Q,过点D作DH⊥x轴于H,过Q点作QG⊥DH于G, ∵∠PBD=45° ∴QD=DB ∴∠QDG+∠BDH=90° 又∵∠DQG+∠QDG=90° ∴∠DQG=∠BDH ∴△QDG≌△DBH ∴QG=DH=4,DG=BH=1 由(2)知D(3,4) ∴Q(-1,3) ∵B(4,0) ∴直线BQ的解析式为y=-x+ 解方程组 得 ∴点P的坐标为(,).
复制答案
考点分析:
相关试题推荐
在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.
(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连接EF,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,二次函数的图象与x轴相交于A(-3,0),B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点.一次函的图象过点B、D.
(1)求D点的坐标.
(2)求一次函数的表达式.
(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.

manfen5.com 满分网 查看答案
如图,在平行四边形ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA.
(1)判断△APB是什么三角形,证明你的结论;
(2)比较DP与PC的大小;
(3)画出以AB为直径的⊙O,交AD于点E,连接BE与AP交于点F,若tan∠BPC=manfen5.com 满分网,求tan∠AFE的值.

manfen5.com 满分网 查看答案
如图,AB=200cm,O为AB的中点,OE⊥AB,P从A点以2cm/s的速度向B运动,点Q从O点以3cm/s的速度运动向E运动,当P、Q两点运动多少时间时,△POQ的面积为1800cm2

manfen5.com 满分网 查看答案
有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)若用(m,n)表示小明取球时m与n的对应值,请画出树状图并写出(m,n)的所有取值;
(2)求关于x的一元二次方程x2-mx+manfen5.com 满分网n=0有实数根的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.