若一个矩形的短边与长边的比值为
(黄金分割数),我们把这样的矩形叫做黄金矩形.
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).
考点分析:
相关试题推荐
如图,已知AB∥CD,AD,BC相交于E,F为EC上一点,且∠EAF=∠C.
求证:(1)∠EAF=∠B;(2)AF
2=FE•FB.
查看答案
位似中心的位置有几种情况?(以三角形为例)
查看答案
如图,△OAB和△OCD是位似图形,AB与CD平行吗?为什么?
查看答案
要把四边形ABCD缩小到原来的
的步骤是什么?
查看答案
(1)阅读下列材料,补全证明过程:
已知:如图,矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连接DE交OC于点F,作FG⊥BC于G.求证:点G是线段BC的一个三等分点.
证明:在矩形ABCD中,OE⊥BC,DC⊥BC,
∴OE∥DC,∵
,∴
=
=
∴
=
.…
(2)请你仿照(1)的画法,在原图上画出BC的一个四等分点(要求保留画图痕迹,可不写画法及证明过程).
查看答案