满分5 > 初中数学试题 >

如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补. (1)求∠C的...

如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补.
(1)求∠C的度数;
(2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;
(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值.

manfen5.com 满分网
(1)根据多边形的内角和公式可得到∠C的度数为90°; (2)过点A作AE⊥BC,垂足为E.则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形.可以根据已知利用AAS来判定△ABE≌△ADF从而得到AE=AF,即得到四边形AECF是正方形; (3)连接BD,根据勾股定理求得BD的长,根据已知得到△ABD的面积,从而可求得AM的长,再根据相似三角形的判定得到△ABM∽△ABD.根据相似三角形的对应边成比例可得到BM的长,再根据勾股定理即可求得AB的长. 【解析】 (1)∵∠ABC与∠ADC互补, ∴∠ABC+∠ADC=180°. ∵∠A=90°, ∴∠C=360°-90°-180°=90°; (2)过点A作AE⊥BC,垂足为E. 则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形. 过点A作AF∥BC交CD的延长线于F, ∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°, ∴∠ABC=∠ADF. ∵AD=AB,∠AEC=∠AFD=90°,∴△ABE≌△ADF. ∴AE=AF.∴四边形AECF是正方形; (3)解法1:连接BD, ∵∠C=90°,CD=6,BC=8,Rt△BCD中,BD==10 又∵S四边形ABCD=49,∴S△ABD=49-24=25. 过点A作AM⊥BD垂足为M, ∴S△ABD=×BD×AM=25.∴AM=5. 又∵∠BAD=90°,∴△ABM∽△DAM. ∴=. 设BM=x,则MD=10-x, ∴=.解得x=5. ∴AB=5. 解法2:连接BD,∠A=90°. 设AB=x,AD=y,则x2+y2=102,① ∵xy=25,∴xy=50.② 由①,②得:(x-y)2=0. ∴x=y. 2x2=100. ∴x=5.
复制答案
考点分析:
相关试题推荐
从地面竖直上抛物体,已知物体离地面高度h(米)和抛出时间t(秒)符合关系式h=vt-manfen5.com 满分网gt2,其中v是竖直上抛时的初速度,重力加速度g以10米/秒2计算.设v=20米/秒的初速度上升,
(1)抛出多少时间物体离地面高度是15米?
(2)抛出多少时间以后物体回到原处?
(3)抛出多少时间物体到达最大高度?最大高度是多少?
查看答案
在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD得中点.
(1)证明△ADQ∽△QCP;(2)求证:AQ⊥QP.

manfen5.com 满分网 查看答案
学校生物小组有一块长32m,宽20m的矩形试验田,为了方便管理,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为540m2,小道的宽应是多少?

manfen5.com 满分网 查看答案
某药品经过两次降价,每瓶零售价由100元降为81元,已知两次降价的百分率相同.求每次降价的百分率.
查看答案
如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=60米,DC=30米,EC=25米,求两岸间的大致距离AB.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.