满分5 > 初中数学试题 >

在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次...

在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根.
(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值.
根据一元二次方程的根与系数的关系求得m的值后,再求得方程的解,进而求出△ABC的面积与较小锐角的正弦值. 【解析】 (1)∵a,b是方程x2-mx+2m-2=0的解, ∴a+b=m,ab=2m-2, 在Rt△ABC中,由勾股定理得,a2+b2=c2, 而a2+b2=(a+b)2-2ab,∵c=5, ∴a2+b2=(a+b)2-2ab=25, 即:m2-2(2m-2)=25,解得,m1=7,m2=-3, ∵a,b是Rt△ABC的两条直角边的长. ∴a+b=m>0,m=-3不合题意,舍去. ∴m=7, (2)△ABC的面积=ab, ∵a+b=m=7,a2+b2=(a+b)2-2ab=25,解得:ab=12, 故)△ABC的面积=ab=×12=6; 另【解析】 ∵m=7,a,b是方程的两个根, ∴ab==12, ∴△ABC的面积=ab=×12=6; (3)当m=7时,原方程为x2-7x+12=0, 解得,x1=3,x2=4, 不妨设a=3,则sinA==, ∴Rt△ABC中较小锐角的正弦值为.
复制答案
考点分析:
相关试题推荐
如图,学校生物兴趣小组的同学们用围栏围了一个面积为24平方米的矩形饲养场地ABCD.设BC为x米,AB为y米.
(1)求y与x的函数关系式;
(2)延长BC至E,使CE比BC少1米,围成一个新的矩形ABEF,结果场地的面积增加了16平方米,求BC的长.

manfen5.com 满分网 查看答案
如图,两建筑物的水平距离BC为24米,从点A测得点D的俯角α=30°,测得点C的俯角β=60°,求AB和CD两座建筑物的高.(结果保留根号)

manfen5.com 满分网 查看答案
矩形DEFG内接于△ABC,点D在AB上,点G在AC上,E、F在BC上,AH⊥BC于H,且交DG于N,BC=18cm,AH=6cm,DE:DG=2:3,求矩形DEFG的周长.

manfen5.com 满分网 查看答案
如图,△ABC在坐标平面内三顶点的坐标分别为A(1,2)、B(3,3)、C(3,1).
①根据题意,请你在图中画出△ABC;
②以B为位似中心,画出与△ABC相似且相似比是3:1的△BA′C′,并分别写出顶点A′和C′的坐标.

manfen5.com 满分网 查看答案
如图在四边形ABCD中,DE∥BC,交AB于点E,点F在AB上,请你再添加一个条件(不再标注或使用其他字母),使△FCB∽△ADE,并给出证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.