满分5 > 初中数学试题 >

如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上...

如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,manfen5.com 满分网)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

manfen5.com 满分网
(1)根据折叠的性质可知:AB=AG=OG=,而OA=BC=m,那么在直角三角形OGA中即可用勾股定理求出m的值. (2)由于△OGA是个等腰直角三角形,已知了OA的长,因此不难求出G点的坐标,根据O,A,G三点的坐标即可用待定系数法求出抛物线的解析式. (3)本题要分情况进行讨论: ①当OP=PG,那么P点为OG的垂直平分线与抛物线对称轴的交点.因此P与H重合,P点坐标为(1,0) ②当OP=OG,那么△OPG为等腰直角三角形因此GH=PH=1,P点坐标为(1,-1). ③当GP=OG时,GP=,因此P点的坐标为(1,1+),(1,1-).(在G点上下各有一点) 【解析】 (1)解法一:∵B(m,), 由题意可知AG=AB=,OG=OC=,OA=m(2分) ∵∠OGA=90°, ∴OG2+AG2=OA2 ∴2+2=m2. 又∵m>0, ∴m=2. 解法二:∵B(m,), 由题意可知AG=AB=,OG=OC=,OA=m ∵∠OGA=90°, ∴∠GOA=∠GAO=45° ∴m=OA==2. (2)解法一:过G作直线GH⊥x轴于H, 则OH=1,HG=1,故G(1,1). 又由(1)知A(2,0), 设过O,G,A三点的抛物线解析式为y=ax2+bx+c ∵抛物线过原点, ∴c=0. 又∵抛物线过G,A两点, ∴, 解得, ∴所求抛物线为y=-x2+2x, 它的对称轴为x=1. 解法二:过G作直线GH⊥x轴于H, 则OH=1,HG=1,故G(1,1). 又由(1)知A(2,0), ∴点A,O关于直线l对称, ∴点G为抛物线的顶点. 于是可设过O,G,A三点的抛物线解析式为y=a(x-1)2+1, ∵抛物线过点O(0,0), ∴0=a(0-1)2+1, 解得a=-1, ∴所求抛物线为y=(-1)(x-1)2+1=-x2+2x 它的对称轴为x=1. (3)答:存在 满足条件的点P有(1,0),(1,-1),(1,1-),(1,1+).
复制答案
考点分析:
相关试题推荐
南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润=销售价-进货价)
(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;
(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少?

manfen5.com 满分网 查看答案
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于A(-2,1),B(1,n)两点.
(1)求两个函数的解析式;
(2)求△AOB的面积;
(3)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.

manfen5.com 满分网 查看答案
如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.
(1)求证:AC平分∠DAB;
(2)若AC=8,manfen5.com 满分网,试求⊙O的半径;
(3)若点B为manfen5.com 满分网的中点,试判断四边形ABCO的形状.

manfen5.com 满分网 查看答案
如图抛物线y=-x2+5x+k经过点C(4,0)与x轴交于另一点A,与y轴交于点B.
(1)求AC的长;
(2)求出△ABC的面积.

manfen5.com 满分网 查看答案
已知扇形的半径为30cm,圆心角为120°.
(1)求扇形的弧长;
(2)若用它卷成一个无底的圆锥形筒,求出这个圆锥形筒的高.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.