满分5 > 初中数学试题 >

在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,...

在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )
A.7
B.11
C.7或11
D.7或10
题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案. 【解析】 设等腰三角形的底边长为x,腰长为y,则根据题意, 得①或② 解方程组①得:,根据三角形三边关系定理,此时能组成三角形; 解方程组②得:,根据三角形三边关系定理此时能组成三角形, 即等腰三角形的底边长是11或7; 故选C.
复制答案
考点分析:
相关试题推荐
如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为( )
manfen5.com 满分网
A.13
B.14
C.15
D.16
查看答案
等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高为    cm. 查看答案
等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为    查看答案
等腰三角形中,如果底边长为6,一腰长为8,那么周长是    ;如果等腰三角形有一边长是6,另一边长是8,那么它的周长是    ;如果等腰三角形的两边长分别是4、8,那么它的周长是    查看答案
我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
(3)如果直线x=m在线段OB上移动,交x轴于点D,交抛物线于点E,交BD于点F.连接DE和BE后,对于问题“是否存在这样的点E,使△BDE的面积最大?”小明同学认为:“当E为抛物线的顶点时,△BDE的面积最大.”他的观点是否正确?提出你的见解,若△BDE的面积存在最大值,请求出m的值以及点E的坐标.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.