两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.
考点分析:
相关试题推荐
在△ABC中,D,E分别是AC,AB上的点,BD与CE交于O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.请你从上述四个条件中选出两个条件,然后利用这两个条件证明△ABC是等腰三角形.(选出的条件用序号表示)
查看答案
已知:如图,AD平分∠BAC,AB=AC.
求证:△DBC是等腰三角形.
查看答案
在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )
A.7
B.11
C.7或11
D.7或10
查看答案
如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为( )
A.13
B.14
C.15
D.16
查看答案
等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高为
cm.
查看答案