请阅读下列材料:
问题:如图(1),一圆柱的底面半径、高均为5cm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:
路线1:侧面展开图中的线段AC.如下图(2)所示:
设路线1的长度为l
1,则l
12=AC
2=AB
2+
2=5
2+(5π)
2=25+25π
2路线2:高线AB+底面直径BC.如上图(1)所示:
设路线2的长度为l
2,则l
22=(AB+BC)
2=(5+10)
2=225
l
12-l
22=25+25π
2-225=25π
2-200=25(π
2-8)>0
∴l
12>l
22,∴l
1>l
2所以要选择路线2较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1cm,高AB为5cm”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l
12=AC
2=______;
路线2:l
22=(AB+BC)
2=______
∵l
12______l
22,
∴l
1______l
2(填>或<)
∴选择路线______(填1或2)较短.
(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到C点的路线最短.
考点分析:
相关试题推荐
如图,C是射线OE上的一动点,AB是过点C的弦,直线DA与OE的交点为D,现有三个论断:①DA是⊙O的切线;②DA=DC;③OD⊥OB.请你以其中的两个论断为条件,另一个论断为结论,用序号写出一个真命题,用“★★⇒★”表示.并给出证明.我的命题是:______.
查看答案
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
查看答案
在所给的8×8的正方形网格中,按下列要求操作:(单位正方形边长为1)
(1)请在第二象限内的格点上找一点C,使△ABC是以AB为底的等腰三角形,且腰长为无理数,试写出C点的坐标;
(2)画出△ABC以点C为中心,旋转180°后的△A′B′C′,并求△A′B′C′的面积.
查看答案
甲、乙两队进行拔河比赛,裁判员让两队队长用“石头、剪子、布”的手势方式选择场地位置.规则是:石头胜剪子,剪子胜布,布胜石头,手势相同再决胜负.请你说明裁判员的这种作法对甲、乙双方是否公平,为什么?(用树状图或列表法解答)
查看答案
已知m、n是方程x
2+6x+5=0的两根,且点A(a,m)和点B(n,b)关于原点对称,试比较a+b与
的大小.
查看答案