满分5 > 初中数学试题 >

如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两...

如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)可通过构建直角三角形来求解.过C作CH⊥AB于H,在直角三角形ACH中,根据半径及C点的坐标即可用三角形函数求出∠ACB的值. (2)根据垂径定理可得出AH=BH,然后在直角三角形ACH中可求出AH的长,再根据C点的坐标即可得出A、B两点的坐标. (3)根据抛物线和圆的对称性,即可得出圆心C和P点必在抛物线的对称轴上,因此可得出P点的坐标为(1,3).然后可用顶点式二次函数通式来设抛物线的解析式.根据A或B的坐标即可确定抛物线的解析式. (4)如果OP、CD互相平分,那么四边形OCPD是平行四边形.因此PC平行且相等于OD,那么D点在y轴上,且坐标为(0,2).然后将D点坐标代入抛物线的解析式中即可判定出是否存在这样的点. 【解析】 (1)作CH⊥x轴,H为垂足, ∵CH=1,半径CB=2, ∵∠BCH=60°, ∴∠ACB=120°. (2)∵CH=1,半径CB=2 ∴HB=, 故A(1-,0),B(1+,0). (3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3) 设抛物线解析式y=a(x-1)2+3, 把点B(1+,0)代入上式,解得a=-1; ∴y=-x2+2x+2. (4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形 ∴PC∥OD且PC=OD. ∵PC∥y轴, ∴点D在y轴上. 又∵PC=2, ∴OD=2,即D(0,2). 又D(0,2)满足y=-x2+2x+2, ∴点D在抛物线上 所以存在D(0,2)使线段OP与CD互相平分.
复制答案
考点分析:
相关试题推荐
某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.
(1)求售价为70元时的销售量及销售利润;
(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;
(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?
查看答案
manfen5.com 满分网如图,有一个抛物线型拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中,求此抛物线的函数关系式.
查看答案
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.
(1)当α=35°时,求β的度数;
(2)猜想α与β之间的关系,并给予证明.

manfen5.com 满分网 查看答案
如图,已知矩形ABCD的边AB=4,BC=3,按照图示位置放置在直线AP上,然后转动,当它转动一周时,求顶点A经过的路线长.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.