满分5 > 初中数学试题 >

如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交C...

如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:BD=CD;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

manfen5.com 满分网
(1)先由AF∥BC,利用平行线的性质可证∠AFE=∠DCE,而E是AD中点,那么AE=DE,∠AEF=∠DEC,利用AAS可证△AEF≌△DEC,那么有AF=DC,又AF=BD,从而有BD=CD; (2)四边形AFBD是矩形.由于AF平行等于BD,易得四边形AFBD是平行四边形,又AB=AC,BD=CD,利用等腰三角形三线合一定理,可知AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形. 证明: (1)∵AF∥BC, ∴∠AFE=∠DCE, ∵E是AD的中点, ∴AE=DE, , ∴△AEF≌△DEC, ∴AF=DC, ∵AF=BD, ∴BD=CD; (2)四边形AFBD是矩形. ∵AB=AC,D是BC的中点, ∴AD⊥BC, ∴∠ADB=90° ∵AF=BD, ∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC, ∴四边形AFBD是平行四边形, 又∵∠ADB=90°, ∴四边形AFBD是矩形.
复制答案
考点分析:
相关试题推荐
已知等腰△ABC的一边长a=4,另两边b、c的长恰好是方程x2-(2k+2)x+4k=0的两个根.求△ABC的周长.
查看答案
已知:关于x的方程x2-(2m-1)x+m2-m-2=0,求证:此方程一定有两个不相等的实根.
查看答案
若关于x的方程(k-1)manfen5.com 满分网有两个不相等的实数根.求k的取值范围.
查看答案
用配方法证明代数式2x2-x+3的值不小于manfen5.com 满分网
查看答案
解方程:
①2x2-4x-7=0(配方法);
②4x2-3x-1=0(公式法);
③(x+3)(x-1)=5;
④(3y-2)2=(2y-3)2
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.