(1)计算:如图①,直径为a的三等圆⊙O
1、⊙O
2、⊙O
3两两外切,切点分别为A、B、C,求O
1A的长(用含a的代数式表示);
(2)探索:若干个直径为a的圆圈分别按如图②所示的方案一和如图③所示的方案二的方式排放,探索并求出这两种方案中n层圆圈的高度h
n和h
n′(用含n、a的代数式表示);
(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(
≈1.73)
考点分析:
相关试题推荐
某批发市场批发甲、乙两种水果,甲种水果的销售利润y
甲(万元)与进货量x(吨)近似满足函数关系y
甲=0.3x;乙种水果的销售利润y
乙(万元)与进货量x(吨)近似满足函数关系y
乙=ax
2+bx(其中a≠0,a,b为常数),当x为1吨时,y
乙为1.4万元;当x为2吨时,y
乙为2.6万元.
(1)求出a,b的值,并写出y
乙(万元)与x(吨)之间的函数关系式.
(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式,并写出t的取值范围.
(3)在(2)的前提下,这两种水果各进多少吨时,获得的销售利润之和最大,最大利润是多少?
查看答案
在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若BC=6,AD=4,求⊙O的面积.
查看答案
如图,点P的坐标为(2,
),过点P作x轴的平行线交y轴于点A,交双曲线y=
(x>0)于点N;作PM⊥AN交双曲线y=
(x>0)于点M,连接AM.已知PN=4.
(1)求k的值.(2)求△APM的面积.
查看答案
一种千斤顶利用了四边形的不稳定性.如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变∠ADC的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当∠ADC从60°变为120°时,千斤顶升高了多少?(
,结果保留整数)
查看答案
有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.
(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.
(Ⅱ)求摸出的两个球号码之和等于5的概率.
查看答案