满分5 > 初中数学试题 >

正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点. (1)如图①,若点E在上...

正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.
(1)如图①,若点E在manfen5.com 满分网上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;
(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=manfen5.com 满分网AE.请你说明理由;
(3)如图②,若点E在manfen5.com 满分网上.写出线段DE、BE、AE之间的等量关系.(不必证明)
manfen5.com 满分网
(1)中易证AD=AB,EB=DF,所以只需证明∠ADF=∠ABE,利用同弧所对的圆周角相等不难得出,从而证明全等; (2)中易证△AEF是等腰直角三角形,所以EF=AE,所以只需证明DE-BE=EF即可,由BE=DF不难证明此问题; (3)类比(2)不难得出(3)的结论. 【解析】 (1)在正方形ABCD中,AB=AD(1分) ∵∠1和∠2都对, ∴∠1=∠2,(3分) 在△ADF和△ABE中, , ∴△ADF≌△ABE(SAS);(4分) (2)由(1)有△ADF≌△ABE, ∴AF=AE,∠3=∠4.(5分) 在正方形ABCD中,∠BAD=90°. ∴∠BAF+∠3=90°. ∴∠BAF+∠4=90°. ∴∠EAF=90°.(6分) ∴△EAF是等腰直角三角形. ∴EF2=AE2+AF2. ∴EF2=2AE2.(7分) ∴EF=AE.(8分) 即DE-DF=AE. ∴DE-BE=AE.(9分) (3)BE-DE=AE.理由如下:(12分) 在BE上取点F,使BF=DE,连接AF. 易证△ADE≌△ABF, ∴AF=AE,∠DAE=∠BAF.(5分) 在正方形ABCD中,∠BAD=90°. ∴∠BAF+∠DAF=90°. ∴∠DAE+∠DAF=90°. ∴∠EAF=90°.(6分) ∴△EAF是等腰直角三角形. ∴EF2=AE2+AF2. ∴EF2=2AE2.(7分) ∴EF=AE.(8分) 即BE-BF=AE. ∴BE-DE=AE.(9分)
复制答案
考点分析:
相关试题推荐
如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为10cm,∠A=60°,求CD的长.

manfen5.com 满分网 查看答案
长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?
查看答案
如图,四边形ABFE与四边形EFCD是两个大小一样的正方形,试在图中找出所有能使正方形EFCD按顺时针方向旋转一定的角度后能与正方形ABFE重合的点,并分别说出旋转的度数.

manfen5.com 满分网 查看答案
若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求b的值.
查看答案
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).
①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;
②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.