满分5 > 初中数学试题 >

如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以B...

如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

manfen5.com 满分网
(1)AE=CG,要证结论,必证△ABE≌△CBG,由正方形的性质很快确定∠3=∠4,又AB=BC,BE=BG,符合SAS即证. (2)先证△ABE∽△DEH,所以,即可求出函数解析式y=-x2+x,继而求出最值. (3)要使△BEH∽△BAE,需,又因为△ABE∽△DEH,所以,即,所以当E点是AD的中点时,△BEH∽△BAE. 【解析】 (1)AE=CG. 理由:正方形ABCD和正方形BEFG中, ∠3+∠5=90°, ∠4+∠5=90°, ∴∠3=∠4. 又AB=BC,BE=BG, ∴△ABE≌△CBG. ∴AE=CG. (2)∵正方形ABCD和正方形BEFG, ∴∠A=∠D=∠FEB=90°. ∴∠1+∠2=90°∠2+∠3=90°. ∴∠1=∠3. 又∵∠A=∠D, ∴△ABE∽△DEH. ∴. ∴. ∴y=-x2+x =-(x-)2+ 当x=时,y有最大值为. (3)【解析】 当E点是AD的中点时,△BEH∽△BAE, 理由:∵E是AD中点, ∴AE=. ∴DH=. 又∵△ABE∽△DEH, ∴. 又∵, ∴. 又∠DAB=∠FEB=90°, ∴△BEH∽△BAE.
复制答案
考点分析:
相关试题推荐
小明想用一块三角形废料截取一个正方形,如图所示,操作如下:过AB上点D作DE⊥BC,以DE为边作正方形DEFG,随后他又改变了主意,想尽可能的利用废料,在△ABC内部截一个正方形,使一边在BC上,另外两点位于AB、AC上,利用你所学知识,帮他画出来.
(1)在小明作图的基础上作出正方形,简述作法;
(2)证明你所作的四边形是正方形;
(3)若BC=120cm,BC边上的高为80cm,求所作正方形的边长.

manfen5.com 满分网 查看答案
如图,已知△ABC中CE⊥AB于E,BF⊥AC于F,
(1)求证:△AFE∽△ABC;
(2)若∠A=60°时,求△AFE与△ABC面积之比.

manfen5.com 满分网 查看答案
有一座圆弧形的拱桥,桥下水面宽度8m,拱顶高出水面2m.现有一货船载一货箱欲从桥下经过,已知货箱宽6m,高1.5m(货箱底与水面持平),问该货船能否顺利通过该桥?

manfen5.com 满分网 查看答案
已知抛物线y=ax2+6x-8与直线y=-3x相交于点A(1,m).
(1)求抛物线的解析式;
(2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象.
查看答案
一船在A处测得北偏东45°方向有一灯塔B,船向正东方向以每小时20海里的速度航行1.5小时到达C处时,又观测到灯塔B在北偏东15°方向上,求此时航船与灯塔相距多少海里?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.