过D作DF⊥BC于F,过E作EH⊥AD于H,由AD∥BC,AB⊥BC,得到AD=BF=2,DF=AB=1,得到FC=BC-BF=3-2=1,再根据旋转的性质得∠EDH=∠FDC,于是EH=FC=1,DH=DF=1,在Rt△AHE中,利用勾股定理即可得到AE的长.
【解析】
过D作DF⊥BC于F,过E作EH⊥AD于H,如图,
∵AD∥BC,AB⊥BC,
∴AD=BF=2,DF=AB=1,
∴FC=BC-BF=3-2=1,
∵以D为旋转中心,CD逆时针旋转90°得DE,
∴∠EDH=∠FDC,
∴Rt△EDH≌Rt△CDF,
∴EH=FC=1,DH=DF=1,
∴AH=2+1=3,
在Rt△AHE中,AE===.
故答案为:.