满分5 > 初中数学试题 >

已知,点P是正方形ABCD内的一点,连PA、PB、PC. (1)将△PAB绕点B...

已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长;
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

manfen5.com 满分网
(1)△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积实际是大扇形OAC与小扇形BPP′的面积差,且这两个扇形的圆心角同为90度; (2)连接PP′,证△PBP′为等腰直角三角形,从而可在Rt△PP′C中,用勾股定理求得PC=6; (3)将△PAB绕点B顺时针旋转90°到△P′CB的位置,由勾股逆定理证出∠P′CP=90°,再证∠BPC+∠APB=180°,即点P在对角线AC上. 【解析】 (1)①S阴影=S扇形ABC+S△BP′C-S扇形PBP′-S△ABP =S扇形ABC-S扇形PBP′ =, =(a2-b2); ②连接PP′, 根据旋转的性质可知: BP=BP′,∠PBP′=90°; 即:△PBP′为等腰直角三角形, ∴∠BPP′=45°, ∵∠BPA=∠BP′C=135°,∠BP′P=45°, ∴∠BPA+∠BPP′=180°, 即A、P、P′共线, ∴∠PP′C=135°-45°=90°; 在Rt△PP′C中,PP′=4,P′C=PA=2,根据勾股定理可得PC=6. (2)将△PAB绕点B顺时针旋转90°到△P′CB的位置,连接PP′. 同(1)①可知:△BPP′是等腰直角三角形,即PP′2=2PB2; ∵PA2+PC2=2PB2=PP′2, ∴PC2+P′C2=PP′2, ∴∠P′CP=90°; ∵∠PBP′=∠PCP′=90°,在四边形BPCP′中,∠BP′C+∠BPC=180°; ∵∠BPA=∠BP′C, ∴∠BPC+∠APB=180°,即点P在对角线AC上.
复制答案
考点分析:
相关试题推荐
如图,点P是圆上的一个动点,弦AB=manfen5.com 满分网.PC是∠APB的平分线,∠BAC=30°.
(1)当∠PAC等于多少度时,四边形PACB有最大面积,最大面积是多少?
(2)当∠PAC等于多少度时,四边形PACB是梯形,说明你的理由.

manfen5.com 满分网 查看答案
某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量增长率的manfen5.com 满分网,求新品种花生亩产量的增长率.
查看答案
某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.
(1)写出所有选购方案(利用树状图或列表方法表示);
(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?
(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.

manfen5.com 满分网 查看答案
已知:如图,CA=CB=CD,过三点A,C,D的⊙O交AB于点F.
求证:CF平分∠BCD.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2-6x+k=0有两个实数根.
(1)求k的取值范围;
(2)如果k取符合条件的最大整数,且一元二次方程x2-6x+k=0与x2+mx-1=0有一个相同的根,求常数m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.