(1)根据二次函数图象左加右减,上加下减的平移规律即可得出y2的图象;
(2)由(1)可得出抛物线y2的对称轴,也就得出了P点的横坐标;将x=t分别代入y=x和抛物线y2的解析式中,可求出A、B的坐标,若△ABP是以点A或点B为直角顶点的等腰直角三角形,则AB=AP(或BP)即A、B两点纵坐标差的绝对值等于点A(或B)与点P横坐标差的绝对值,由此可列出关于t的方程求出t的值.
【解析】
(1)抛物线y1=2x2向右平移2个单位,得:y=2(x-2)2=2x2-8x+8;
故抛物线y2的解析式为y2=2x2-8x+8.
(2)由(1)知:抛物线y2的对称轴为x=2,故P点横坐标为2;
当x=t时,直线y=x=t,故A(t,t);
则y2=2x2-8x+8=2t2-8t+8,故B(t,2t2-8t+8);
若△ABP是以点A或点B为直角顶点的等腰直角三角形,则有AB=AP或AB=BP,
此时AB=|2t2-8t+8-t|,AP=|t-2|,
可得:|t-2|=|2t2-8t+8-t|;
当2t2-8t+8-t=t-2时,如图1,t2-5t+5=0,解得t1=;
当2t2-8t+8-t=2-t时,如图2,t2-4t+3=0,解得t2=1,t3=3;
故符合条件的t值为:1或3或.