满分5 > 初中数学试题 >

已知:如图所示,关于x的抛物线y=ax2+x+c(a≠0)与x轴交于点A(-2,...

已知:如图所示,关于x的抛物线y=ax2+x+c(a≠0)与x轴交于点A(-2,0)、点B(6,0),与y轴交于点C.
(1)求出此抛物线的解析式,并写出顶点坐标;
(2)在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;
(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网
(1)可将A,B两点的坐标代入函数的解析式中,可求出抛物线的解析式.进而求出对称轴的解析式和定点的坐标; (2)由于二次函数和等腰梯形都是轴对称图形,可根据抛物线的对称轴和C点的坐标求出D的坐标.然后用待定系数法求出A,D所在直线的解析式. (3)分五种情况进行讨论: ①如图1,P与M的纵坐标相等,可将M的纵坐标代入抛物线中求出P的坐标,然后可根据M,P的横坐标求出MP的长,即AQ的长,然后根据A的坐标即可求出Q的坐标. ②如图2,方法同①. ③如图3,根据平行四边形的对称性,那么M,P的纵坐标互为相反数,因此可求出P的坐标,可先在三角形AOM中求出AO的长,然后A到抛物线对称轴的长+P的横坐标=Q的横坐标,据此可求出Q点的坐标. ④如图4,可参照③的方法求出P的坐标,然后求出PA的长,即MQ的长,然后可过D作x轴的垂线,通过构建直角三角形求出OQ的长.进而得出Q的坐标. ⑤根据题意画出图形,即可求出答案. 【解析】 (1)根据题意,得, 解得, ∴抛物线的解析式为, 顶点坐标是(2,4); (2)D(4,3), 设直线AD的解析式为y=kx+b(k≠0), ∵直线经过点A(-2,0)、点D(4,3), ∴, ∴, ∴y=x+1; (3)存在. ①如图1,P与M的纵坐标相等,可将M的纵坐标代入抛物线中求出P的坐标,然后可根据M,P的横坐标求出MP的长,即AQ的长,然后根据A的坐标即可求出Q的坐标:Q1(2-2,0); ②如图2,方法同①,Q2(-2-2,0); ③如图3,根据平行四边形的对称性,那么M,P的纵坐标互为相反数,因此可求出P的坐标,可先在三角形AOM中求出AO的长,然后A到抛物线对称轴的长+P的横坐标=Q的横坐标,据此可求出Q点的坐标:Q3(6-2,0); ④如图4,可参照③的方法求出P的坐标,然后求出PA的长,即MQ的长,然后可过D作x轴的垂线,通过构建直角三角形求出OQ的长.进而得出Q的坐标:Q4(6+2,0). ⑤以AM为对角线时,把x=2代入y=x+1得y=2, 即M的坐标是(2,2), 过M作x轴的平行线交抛物线与P5、P6, 则这两点的纵坐标是2, 把y=2代入y=-x2+x+3得:y=-x2+x+3=2, 解得:x=2±2, 即P5(2-2,2),P6(2+2,2), ∴Q5的坐标是(2-2,0),Q6的坐标是(-2-2,0). 综上所述:Q1(2-2,0),Q2(-2-2,0),Q3(6-2,0),Q4(6+2,0).
复制答案
考点分析:
相关试题推荐
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案
如图,直线y=k1x+b与反比例函数manfen5.com 满分网(x>0)的图象交于A(1,6),B(a,3)两点.
(1)求k1、k2的值.
(2)直接写出manfen5.com 满分网时x的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.

manfen5.com 满分网 查看答案
用长度为32m的金属材料制成如图所示的金属框,下部为一个矩形,上部为一个等边三角形.当下部的矩形面积最大时,求矩形的AB、BC的边长各为多少m?并求此时整个金属框的面积是多少?

manfen5.com 满分网 查看答案
如图,病人按规定的剂量服用某药物,测得服药后2小时,每毫升血液中含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中含药量y(毫克)与时间x(小时)成正比例;2小时后y与x成反比例.
(1)当0≤x≤2时;x>2时,分别求y与x的函数关系式?
(2)如果每毫升血液中含药量不低于2毫克时治疗有效,则那么服药一次,治疗疾病的有效时间是多长?

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网的图象(如图所示),请你利用“图象法”求方程manfen5.com 满分网的近似解,
(1)请写出另一函数的解析式并画出它的图象?
(2)根据图象直接写出近似解?(保留两个有效数字).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.