如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP∥OC,交AC于点P,连接MP,已知动点运动了x秒,△MPA的面积为S.
(1)求点P的坐标.(用含x的代数式表示)
(2)写出S关于x的函数关系式,并求出S的最大值.
(3)当△APM与△ACO相似时,求出点P的坐标.
(4)△PMA能否成为等腰三角形?如能,直接写出所有点P的坐标;如不能,说明理由.
考点分析:
相关试题推荐
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
查看答案
如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=
的图象交于A,B两点,且A点的横坐标与B点的纵坐标都是-2.
(1)一次函数的解析式;
(2)△AOB的面积.
查看答案
如图,已知:D,E分别是△ABC的AB,AC边上的点,且△ABC∽△ADE,AD:DB=1:3,DE=2,求BC的长.
查看答案
求二次函数y=x
2-2x-1的顶点坐标及它与x轴的交点坐标.
查看答案
已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.
查看答案