满分5 > 初中数学试题 >

如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,ta...

如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2.二次函数y=x2+mx+2的图象经过点A,B,顶点为D.
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数manfen5.com 满分网图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.
(1)二次函数y=x2+mx+2的图象经过点B,可得B点坐标为(0,2),再根据tan∠OAB=2求出A点坐标,将A代入解析式即可求得函数解析式; (2)根据旋转不变性可轻松求得C点坐标,由于沿y轴运动,故图象开口大小、对称轴均不变,设出解析式,代入C点作标即可求解; (3)由于P点位置不固定,由图可知要分①当点P在对称轴的右侧时,②当点P在对称轴的左侧,同时在y轴的右侧时,③当点P在y轴的左侧时,三种情况讨论. 【解析】 (1)由题意,点B的坐标为(0,2),(1分) ∴OB=2, ∵tan∠OAB=2,即=2. ∴OA=1. ∴点A的坐标为(1,0).(2分) 又∵二次函数y=x2+mx+2的图象过点A, ∴0=12+m+2. 解得m=-3,(1分) ∴所求二次函数的解析式为y=x2-3x+2.(1分) (2)作CE⊥x轴于E, 由于∠BAC=90°,可知∠CAE=∠OBA,△CAE≌△OBA, 可得CE=OA=1,AE=OB=2,可得点C的坐标为(3,1).(2分) 由于沿y轴运动,故图象开口大小、对称轴均不变, 设出解析式为y=x2-3x+c,代入C点作标得1=9-9+c,c=1, 所求二次函数解析式为y=x2-3x+1.(1分) (3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象, 那么对称轴直线x=不变,且BB1=DD1=1.(1分) ∵点P在平移后所得二次函数图象上, 设点P的坐标为(x,x2-3x+1). 在△PBB1和△PDD1中,∵S△PBB1=2S△PDD1, ∴边BB1上的高是边DD1上的高的2倍. ①当点P在对称轴的右侧时,x=2(x-),得x=3, ∴点P的坐标为(3,1); ②当点P在对称轴的左侧,同时在y轴的右侧时,x=2(-x),得x=1, ∴点P的坐标为(1,-1); ③当点P在y轴的左侧时,x<0,又-x=2(-x), 得x=3>0(舍去), ∴所求点P的坐标为(3,1)或(1,-1).(3分)
复制答案
考点分析:
相关试题推荐
如图,直线y=ax(a>0)与双曲线交于A,B两点,且点A的坐标为(4,m),点B的坐标为(n,-2)
(1)求m、n的值;
(2)若双曲线manfen5.com 满分网的上点C的纵坐标为8,求△AOC的面积;
(3)过原点O的另一条直线l交双曲线manfen5.com 满分网于P,Q两点(P点在第一象限),若由点P为顶点组成的四边形的面积为24,求△AOP的面积.

manfen5.com 满分网 查看答案
直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下:
manfen5.com 满分网
请你用上面图示的方法,解答下列问题:
(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;manfen5.com 满分网
(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
manfen5.com 满分网
查看答案
如图,在梯形OABC中,CB∥OA,O为坐标原点,点C在y轴上,点A在x轴上,OC=4,tan∠OAB=2,以点B为顶点的抛物线经过O、A两点.求梯形OABC的面积.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BC是弦,∠ABC=30°,点D在BA的延长线上,且CD=CB.
(1)求证:DC是⊙O的切线;
(2)若DC=2manfen5.com 满分网,求⊙O半径.

manfen5.com 满分网 查看答案
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,3).
(1)在图中画出△OAB绕点O逆时针旋转90°后的△OA1B1
(2)求点B旋转到点B1所经过的路线长.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.