满分5 > 初中数学试题 >

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E...

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.
(1)求证:DE与⊙O相切;
(2)若⊙O的半径为manfen5.com 满分网,DE=3,求AE.

manfen5.com 满分网
(1)根据切线的判定定理只需证明OE⊥DE即可; (2)根据(1)中的证明过程,会发现BC=2DE,根据勾股定理求得AC的长,进一步求得直角三角形斜边上的高BE,最后根据勾股定理求得AE的长. 【解析】 (1)证明:连接OE,BE, ∵AB是直径. ∴BE⊥AC. ∵D是BC的中点, ∴DE=DB. ∴∠DBE=∠DEB. 又OE=OB, ∴∠OBE=∠OEB. ∴∠DBE+∠OBE=∠DEB+∠OEB. 即∠ABD=∠OED. 但∠ABC=90°, ∴∠OED=90°. ∴DE是⊙O的切线. (2)法1:∵∠ABC=90°,AB=2,BC=2DE=6, ∴AC=4. ∴BE=3. ∴AE=; 法2:∵(8分) ∴(10分) ∴.(12分)
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F
(1)求证:FC=FB;
(2)若CD=24,BE=8,求⊙O的直径.

manfen5.com 满分网 查看答案
已知:如图,在Rt△ABC中,∠ACB=90°,AC=6,sinB=manfen5.com 满分网,点D是边BC的中点,CE⊥AD,垂足为E.
求:(1)线段CD的长;
(2)cos∠DCE的值.

manfen5.com 满分网 查看答案
如图所示,某校在一块长40m,宽24m的土地上修一个矩形游泳池,并在四边各筑一条宽度相等的路,若游泳池的面积为720m2,求小路的宽.

manfen5.com 满分网 查看答案
计算:
(1)manfen5.com 满分网
(2)manfen5.com 满分网
查看答案
解方程:
(1)x2+6x+1=0
(2)x2-6x+9=(5-2x)2
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.