已知:如图,AB是⊙O的一条弦,点C为
的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.
(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;
(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.
考点分析:
相关试题推荐
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是
上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.
查看答案
已知,用圆形剪一个梯形ABCD,AB∥CD,AB=24,CD=10,⊙O的半径为13,剪下梯形的面积是多少?写出你的求解过程.
查看答案
已知,如图O为圆心,∠AOB=120°,弓形高ND=2cm,矩形EFGH的两顶点E,F在弦AB上,H,G在弧AB上,且EF=4HE,求HE的长.
查看答案
如图,四边形ABCD内接于⊙O,∠ADC=90°,B是弧AC的中点,AD=20,CD=15,求AB、BC的长.
查看答案
如图,⊙O中两条不平行弦AB和CD的中点M,N.且AB=CD,求证:∠AMN=∠CNM.
查看答案