满分5 > 初中数学试题 >

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这...

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30度.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

manfen5.com 满分网
(1)只要四边形中有一个角是直角,根据勾股定理就有两直角边平方的和等于斜边的平方,即此四边形中存在相邻两边的平方和等于一条对角线的平方,由此可知,正方形、长方形、直角梯形都是勾股四边形. (2)OM=AB知以格点为顶点的M共两个:M(3,4)或M(4,3). (3)欲证明DC2+BC2=AC2,只需证明∠DCE=90度. (1)【解析】 正方形、长方形、直角梯形.(任选两个均可)(2分)(填正确一个得1分) (2)【解析】 答案如图所示.M(3,4)或M′(4,3).(没有写出不扣分) (2分)(根据图形给分,一个图形正确得1分) (3)证明:连接EC, ∵△ABC≌△DBE,(5分) ∴AC=DE,BC=BE,(6分) ∵∠CBE=60°, ∴EC=BC,∠BCE=60°,(7分) ∵∠DCB=30°, ∴∠DCE=90°, ∴DC2+EC2=DE2,(8分) ∴DC2+BC2=AC2. 即四边形ABCD是勾股四边形.(10分)
复制答案
考点分析:
相关试题推荐
阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-manfen5.com 满分网,x1x2=manfen5.com 满分网.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x-3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=6,x1x2=-3则x12+x22=(x1+x22-2x1x2(-6)2-2×(-3)=42.
请你根据以上解法解答下题:已知x1,x2是方程x2-4x+2=0的两根,求:
(1)manfen5.com 满分网的值;
(2)(x1-x22的值.
查看答案
近年来,由于受国际石油市场的影响,汽油价格不断上涨,请你根据下面的信息,帮小明计算今年5月份汽油的价格.

manfen5.com 满分网 查看答案
已知AB在平面直角坐标系中的位置如图所示,每个小正方形的边长为单位1.
(1)在x轴上找一点C,画出△ABC,使△ABC是以AB为底的等腰三角形,并写出点C的坐标:______
(2)将△ABC绕着点C分别按顺时针方向旋转90°、180°、270°,画出旋转后的图形,并说出A点的对应点坐标分别为__________________
(3)试欣赏你画出的图形,想一想:整个图形______轴对称图形(填“是”或“不是”);若是,有______条对称轴.整个图形______中心对称图形(填“是”或“不是”);若是,对称中心是______点.
manfen5.com 满分网
查看答案
化简求值:manfen5.com 满分网,其中a是manfen5.com 满分网的整数部分.
查看答案
完成下面填空:
(1)符合什么条件的两个全等梯形可以拼成一个矩形?
答:______
(2)符合什么条件的两个全等梯形可以拼成一个菱形?
答:______
(3)符合什么条件的两个全等梯形可以拼成一个正方形?
答:______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.