满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的...

如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.
(1)求证:AC=AE;
(2)求AD的长.

manfen5.com 满分网
(1)由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED全等,根据全等三角形的对应边相等即可得证; (2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB-AE可求出EB的长,再由(1)∠AED=90°,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB-CD表示出BD=12-x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长. 【解析】 (1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知), ∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径), ∴∠AED=90°(直径所对的圆周角为直角), 又AD是△ABC的∠BAC的平分线(已知), ∴∠CAD=∠EAD(角平分线定义), ∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等), 在Rt△ACD和Rt△AED中, , ∴Rt△ACD≌Rt△AED(HL), ∴AC=AE(全等三角形的对应边相等); (2)∵△ABC为直角三角形,且AC=5,CB=12, ∴根据勾股定理得:AB==13, 由(1)得到∠AED=90°,则有∠BED=90°, 设CD=DE=x,则DB=BC-CD=12-x,EB=AB-AE=AB-AC=13-5=8, 在Rt△BED中,根据勾股定理得:BD2=BE2+ED2, 即(12-x)2=x2+82, 解得:x=, ∴CD=,又AC=5,△ACD为直角三角形, ∴根据勾股定理得:AD==.
复制答案
考点分析:
相关试题推荐
某餐厅共7名员工,所有员工的工资情况如下表所示:
人员经理厨师甲厨师乙会计服务员甲服务员乙勤杂工
人数1111111
工资额3000700500450360340320
回答下列问题:
(1)餐厅所有员工的平均工资是多少元?
(2)所有员工工资的中位数是多少?
(3)用平均数还是用中位数来描述该餐厅员工工资的一般水平比较恰当?
(4)去掉经理的工资后,其他员工的平均工资是多少元是否也能反映该餐厅员工工资的一般水平?
查看答案
某校数学兴趣小组成员小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:
(1)频数、频率分布表中a=______,b=______
(2)补全频数分布直方图;
(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?
分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计
频数2a2016450
频率0.040.160.400.32b1


manfen5.com 满分网 查看答案
已知:如图,在平行四边形ABCD中,把对角线BD向两边延长,使得DE=BF,连接CE、AF.请判断出AF与CE的某一种关系,然后给予证明.

manfen5.com 满分网 查看答案
为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?

manfen5.com 满分网 查看答案
某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示.
当成人按规定剂量服药后,
(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.