满分5 > 初中数学试题 >

我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生...

我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格y(元)与存放天数x(天)之间的部分对应值如下表所示:
存放天数x(天)246810
市场价格y(元)3234363840
但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y与x的变化规律,并直接写出y与x之间的函数关系式;若存放x天后,将这批野生茵一次性出售,设这批野生菌的销售总额为P元,试求出P与x之间的函数关系式;
(2)该公司将这批野生菌存放多少天后出售可获得最大利润w元并求出最大利润.(利润=销售总额-收购成本-各种费用)
(3)该公司以最大利润将这批野生菌一次性出售的当天,再次按市场价格收购这种野生1180千克,存放入冷库中一段时间后一次性出售,其它条件不变,若要使两次的总盈利不低于4.5万元,请你确定此时市场的最低价格应为多少元?(结果精确到个位,参考数据:manfen5.com 满分网
根据表格规律判断函数类别,就要对一次函数、二次函数和反比例函数的图象,性质有充分的了解,从表格可以看出,y随x的增大而均匀地增大,属于一次函数.本题属于营销问题,根据:利润=销售总额-收购成本-各种费用.再利用相应的函数关系式解决实际问题. 【解析】 由题意得: (1)y=x+30, P=y(1000-3x)=(x+30)(1000-3x)=-3x2+910x+30000; (2)w=P-310x-1000×30=-3x2+910x+30000-310x-1000×30=-3x2+600x=-3(x-100)2+30000 ∵0<x≤110, ∴当x=100时,利润w最大,最大利润为30000元, ∴该公司将这批野生茵存放100天后出售可获得最大利润30000元; (3)由(2)可知,该公司以最大利润出售这批野生菌的当天,市场价格为130元 设再次进货的野生茵存放a天,则利润 w1=(a+130)(1180-3a)-310a-130×1180, =-3a2+480a, ∴两次的总利润为w2=-3a2+480a+30000, 由-3a2+480a+30000=45000, 解得, ∵-3<0, ∴当时,两次的总利润不低于4.5万元, 又∵0<x≤110,,当a≈43时,此时市场价格最低,市场最低价格应为130+43=173元.
复制答案
考点分析:
相关试题推荐
如图,梯形ABCD中,AB∥CD,AD⊥CD,AC=AB,∠DAC=30度.点E、F是梯形ABCD外的两点,且∠EAB=∠FCB,∠ABC=∠FBE,∠CEB=30°.
(1)求证:BE=BF;
(2)若CE=5,BF=4,求线段AE的长.

manfen5.com 满分网 查看答案
已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,过A作AC⊥x轴于点C.已知manfen5.com 满分网,且点B的纵坐标为-3.
(1)求点A的坐标及该反比例函数的解析式;
(2)求直线AB的解析式.

manfen5.com 满分网 查看答案
为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.
(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?
(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?
查看答案
先化简,再求值manfen5.com 满分网,其中manfen5.com 满分网
查看答案
青岛国际帆船中心要修建一处公共服务设施,使它到三所运动员公寓A、B、C的距离相等.
(1)若三所运动员公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置;
(2)若∠BAC=66°,则∠BPC=______度.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.