满分5 >
初中数学试题 >
如图,已知A(3,0),B(0,6),且∠ACO=∠BAO,则点C的坐标为 ,A...
如图,已知A(3,0),B(0,6),且∠ACO=∠BAO,则点C的坐标为
,AC=
.
考点分析:
相关试题推荐
如图,若∠BEF=∠CDF,则△
∽△
,△
∽△
.
查看答案
如图,
(1)若
=
,则△OAC∽△OBD,∠A=
.
(2)若∠B=
,则△OAC∽△OBD,
与
是对应边.
(3)请你再写一个条件,
,使△OAC∽△OBD.
查看答案
在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)=______;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
查看答案
不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为
.
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
查看答案
分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.
查看答案