满分5 > 初中数学试题 >

如图,抛物线y=x2+bx+c经过A(-,0)、B(0,-3)两点,此抛物线的对...

如图,抛物线y=manfen5.com 满分网x2+bx+c经过A(-manfen5.com 满分网,0)、B(0,-3)两点,此抛物线的对称轴为直线l,顶点为C,且l与直线AB交于点D.
(1)求此抛物线的解析式;
(2)直接写出此抛物线的对称轴和顶点坐标;
(3)连接BC,求证:BC=CD.

manfen5.com 满分网
(1)利用待定系数法,将点A,B的坐标代入解析式即可求得b,c的值,即可得解析式; (2)利用公式:二次函数y=ax2+bx+c的对称轴为x=-,顶点坐标为(-,)即可求解; (3)如图可知点B是抛物线与y轴的交点,即可求得BC的长,点D是直线AB与对称轴的交点,求得直线AB的解析式即可求得D的坐标,则可求得CD的长,则可证得结果. (1)【解析】 ∵抛物线y=x2+bx+c 经过A(-,0)、B(0,-3)两点 ∴ 解得 ∴此抛物线的解析式为. (2)【解析】 由(1)可得此抛物线的对称轴l为, 顶点C的坐标为(,-4). (3)证明:∵过A、B两点的直线解析式为 ∴当时,y=-6 ∴点D的纵坐标为-6 ∴CD=|-6|-|-4|=2 作BE⊥l于点E,则 ∴CE=4-3=1 由勾股定理得 ∴BC=DC.
复制答案
考点分析:
相关试题推荐
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.
manfen5.com 满分网
(1)求坡高CD;
(2)求斜坡新起点A与原起点B的距离(精确到0.1米).
查看答案
将正面分别标有数字1,2,3,4,6,背面花色相同的五张卡片洗匀后,背面朝上放在桌面上,从中随机抽取两张.
(1)写出所有机会均等的结果,并求抽出的两张卡片上的数字之和为偶数的概率;
(2)记抽得的两张卡片的数字为(a,b),求点P(a,b)在直线y=x-2上的概率.
查看答案
如图,半圆的直径AB=10,点C在半圆上,BC=6.
(1)求弦AC的长;
(2)若P为AB的中点,PE⊥AB交AC于点E,求PE的长.

manfen5.com 满分网 查看答案
如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.