满分5 > 初中数学试题 >

如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高...

如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少?

manfen5.com 满分网
(1)看图可得出M,P的坐标. (2)已知M,P的坐标,易求出这条抛物线的函数解析式. (3)设A(m,0),则B(12-m,0),C(12-m,+m+3),D(m,+m+3)可得支撑架总长. 【解析】 (1)由题意得: M(12,0),P(6,6); (2)由顶点P(6,6)设此函数解析式为:y=a(x-6)2+6, 将点(0,3)代入得a=, ∴y=(x-6)2+6 =x2+x+3; (3)设A(m,0),则 B(12-m,0),C(12-m,m2+m+3),D(m,m2+m+3) ∴“支撑架”总长AD+DC+CB=(m2+m+3)+(12-2m)+(m2+m+3)= ∵此二次函数的图象开口向下. ∴当m=0时,AD+DC+CB有最大值为18.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=manfen5.com 满分网x2+bx+c经过A(-manfen5.com 满分网,0)、B(0,-3)两点,此抛物线的对称轴为直线l,顶点为C,且l与直线AB交于点D.
(1)求此抛物线的解析式;
(2)直接写出此抛物线的对称轴和顶点坐标;
(3)连接BC,求证:BC=CD.

manfen5.com 满分网 查看答案
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.
manfen5.com 满分网
(1)求坡高CD;
(2)求斜坡新起点A与原起点B的距离(精确到0.1米).
查看答案
将正面分别标有数字1,2,3,4,6,背面花色相同的五张卡片洗匀后,背面朝上放在桌面上,从中随机抽取两张.
(1)写出所有机会均等的结果,并求抽出的两张卡片上的数字之和为偶数的概率;
(2)记抽得的两张卡片的数字为(a,b),求点P(a,b)在直线y=x-2上的概率.
查看答案
如图,半圆的直径AB=10,点C在半圆上,BC=6.
(1)求弦AC的长;
(2)若P为AB的中点,PE⊥AB交AC于点E,求PE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.