(1)由已知△PAC绕点A逆时针旋转后,得到△P′AB,可得△PAC≌△P′AB,PA=P'A,旋转角∠P'AP=∠BAC=60°,∴△APP'为等边三角形,即可求得PP';
(2)由△APP'为等边三角形,得∠APP'=60°,在△PP'B中,已知三边,用勾股定理逆定理证出直角三角形,得出∠P'PB=90°,可求∠APB的度数.
【解析】
(1)连接PP′,由题意可知BP′=PC=10,AP′=AP,
∠PAC=∠P′AB,而∠PAC+∠BAP=60°,
所以∠PAP′=60度.故△APP′为等边三角形,
所以PP′=AP=AP′=6;
(2)利用勾股定理的逆定理可知:
PP′2+BP2=BP′2,所以△BPP′为直角三角形,且∠BPP′=90°
可求∠APB=90°+60°=150°.