满分5 > 初中数学试题 >

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(...

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
manfen5.com 满分网
(1)由抛物线C1:y=a(x+2)2-5得顶点P的为(-2,-5),把点B(1,0)代入抛物线解析式,解得,a=; (2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,根据点P、M关于点B成中心对称,证明△PBH≌△MBG,所以MG=PH=5,BG=BH=3,即顶点M的坐标为(4,5),根据抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到,所以抛物线C3的表达式为y=(x-4)2+5; (3)根据抛物线C4由C1绕点x轴上的点Q旋转180°得点N的纵坐标为5,设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PK⊥NG于K,可求得EF=AB=2BH=6,FG=3,点F坐标为(m+3,0),H坐标为(2,0),K坐标为(m,-5), 根据勾股定理得:PN2=NK2+PK2=m2+4m+104,PF2=PH2+HF2=m2+10m+50,NF2=52+32=34. 分三种情况讨论,利用勾股定理列方程求解即可.①当2∠PNF=90°时,PN2+NF2=PF2,解得m=,即Q点坐标为(,0); ②当∠PFN=90°时,PF2+NF2=PN2,解得m=, ∴Q点坐标为(,0), ③PN>NK=10>NF,所以∠NPF≠90° 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形. 【解析】 (1)由抛物线C1:y=a(x+2)2-5得, 顶点P的坐标为(-2,-5),(2分) ∵点B(1,0)在抛物线C1上, ∴0=a(1+2)2-5, 解得,a=;(4分) (2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G, ∵点P、M关于点B成中心对称, ∴PM过点B,且PB=MB, ∴△PBH≌△MBG, ∴MG=PH=5,BG=BH=3, ∴顶点M的坐标为(4,5),(6分) 抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到, ∴抛物线C3的表达式为y=(x-4)2+5;(8分) (3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到, ∴顶点N、P关于点Q成中心对称, 由(2)得点N的纵坐标为5, 设点N坐标为(m,5),(9分) 作PH⊥x轴于H,作NG⊥x轴于G, 作PK⊥NG于K, ∵旋转中心Q在x轴上, ∴EF=AB=2BH=6, ∴FG=3,点F坐标为(m+3,0). H坐标为(-2,0),K坐标为(m,-5), ∵顶点P的坐标为(-2,-5), 根据勾股定理得: PN2=NK2+PK2=m2+4m+104, PF2=PH2+HF2=m2+10m+50, NF2=52+32=34,(10分) ①当∠PNF=90°时,PN2+NF2=PF2,解得m=, ∴Q点坐标为(,0). ②当∠PFN=90°时,PF2+NF2=PN2,解得m=, ∴Q点坐标为(,0). ③∵PN>NK=10>NF, ∴∠NPF≠90° 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形.(13分)
复制答案
考点分析:
相关试题推荐
如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.
manfen5.com 满分网manfen5.com 满分网
(1)如图1,当n=1时,求正三角形的边长a1
(2)如图2,当n=2时,求正三角形的边长a2
(3)如题图,求正三角形的边长an(用含n的代数式表示)
查看答案
已知抛物线y=x2+kx-manfen5.com 满分网k2(k为常数,且k>0).
(1)证明:此抛物线与x轴总有两个交点;
(2)设抛物线与x轴交于M、N两点,若这两点到原点的距离分别为OM、ON,且manfen5.com 满分网,求k的值.
查看答案
某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式y=-manfen5.com 满分网x+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.
(1)试确定b、c的值;
(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;
(3)“五•一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?

manfen5.com 满分网 查看答案
已知关于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若这个方程有实数根,求k的取值范围;
(2)若这个方程有一个根为1,求k的值;
(3)若以方程x2-2(k-3)x+k2-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数manfen5.com 满分网的图象上,求满足条件的m的最小值.
查看答案
如图在同一直角坐标系中,抛物线与两坐标轴分别交A(-1,0)、B(3,0)和C(0,-3),一次函数的图象与抛物线交于B、C两点.
(1)抛物线解析式是______
(2)抛物线的顶点坐标是______;对称轴是______
(3)当自变量x满足______时,两函数值都随x的增大而增大;
(4)当自变量x满足______时,一次函数值大于二次函数值.
(5)此抛物线关于x轴对称的新抛物线解析式是______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.