化简
的结果是( )
A.-4
B.2
C.±4
D.无意义
考点分析:
相关试题推荐
如图,已知抛物线C
1:y=a(x+2)
2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C
2与抛物线C
1关于x轴对称,将抛物线C
2向右平移,平移后的抛物线记为C
3,C
3的顶点为M,当点P、M关于点B成中心对称时,求C
3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C
1绕点Q旋转180°后得到抛物线C
4.抛物线C
4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
查看答案
如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A
1B
1C
1的顶点A
1与点P重合,第二个△A
2B
2C
2的顶点A
2是B
1C
1与PQ的交点,…,最后一个△A
nB
nC
n的顶点B
n、C
n在圆上.
(1)如图1,当n=1时,求正三角形的边长a
1;
(2)如图2,当n=2时,求正三角形的边长a
2;
(3)如题图,求正三角形的边长a
n(用含n的代数式表示)
查看答案
已知抛物线y=x
2+kx-
k
2(k为常数,且k>0).
(1)证明:此抛物线与x轴总有两个交点;
(2)设抛物线与x轴交于M、N两点,若这两点到原点的距离分别为OM、ON,且
,求k的值.
查看答案
某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y
1(元)与销售月份x(月)满足关系式y=-
x+36,而其每千克成本y
2(元)与销售月份x(月)满足的函数关系如图所示.
(1)试确定b、c的值;
(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;
(3)“五•一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?
查看答案
已知关于x的方程x
2-2(k-3)x+k
2-4k-1=0.
(1)若这个方程有实数根,求k的取值范围;
(2)若这个方程有一个根为1,求k的值;
(3)若以方程x
2-2(k-3)x+k
2-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数
的图象上,求满足条件的m的最小值.
查看答案