如图,已知C,D是双曲线
(x>0)上的两点,直线CD分别交x轴,y轴于A,B两点.设C(x
1,y
1),D(x
2,y
2),连接OC,OD(O是坐标原点),若∠BOC=∠AOD=α,且tanα=
,OC=
.
(1)求C,D的坐标和m的值;
(2)双曲线存在一点P,使得△POC和△POD的面积相等,求点P的坐标;
(3)在(2)的条件下判断点P是否为△OCD的重心.
(4)已知点Q(-2,0),问在直线AC上是否存在一点M使△MOQ的周长L取得最短?若存在,求出L的最小值并证明;若不存在,请说明理由.
查看答案
如图,在Rt△ABC中,∠B=90°,∠C=30°,AB=12厘米,点P从点A出发沿线路AB-BC作匀速运动,点Q从AC的中点D同时出发沿线路DC-CB作匀速运动逐步靠近点P,设P,Q两点运动的速度分别为1厘米/秒、a厘米/秒(a>1),它们在t秒后于BC边上的某一点相遇.
(1)求出AC与BC的长度;
(2)试问两点相遇时所在的E点会是BC的中点吗?为什么?
(3)若以D,E,C为顶点的三角形与△ABC相似,试分别求出a与t的值.(
=1.732,结果精确到0.1)
查看答案