由已知条件可知,两个三角形已有两组对应边对应成比例,若夹角(即顶角)相等,即相似;或底边的比值也等于相似比,利用三边对应成比例两三角形相似,也可得出相似;或一组底角相等,根据等腰三角形的性质以及三角形的内角和定理可求顶角相等,也可得出相似.分三种情况讨论.
【解析】
如右图,△ABC中AB=AC,△DEF中DE=DF,
∵△ABC的腰长等于△DEF的腰长的2倍,
∴,
∴①当时,△ABC∽△DEF;
②当∠A=∠D时,△ABC∽△DEF;
③当∠B=E时,利用等腰三角形的性质及三角形内角和定理可求,∠A=∠D,那么有△ABC∽△DEF;