满分5 > 初中数学试题 >

(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:P...

(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;
(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:manfen5.com 满分网
(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,并给予证明.
manfen5.com 满分网
(1)延长BP至E,使PE=PC,连接CE,证明△PCE是等边三角形.利用CE=PC,∠E=∠3=60°,∠EBC=∠PAC,得到△BEC≌△APC,所以PA=BE=PB+PC; (2)过点B作BE⊥PB交PA于E,证明△ABE≌△CBP,所以PC=AE,可得PA=PC+PB. (3)在AP上截取AQ=PC,连接BQ可证△ABQ≌△CBP,所以BQ=BP.又因为∠APB=30°.所以PQ=PB,PA=PQ+AQ=PB+PC. 证明:(1)延长BP至E,使PE=PC, 连接CE.∵A、B、P、C四点共圆, ∴∠BAC+∠BPC=180°, ∵∠BPC+∠EPC=180°, ∴∠BAC=∠CPE=60°,PE=PC, ∴△PCE是等边三角形, ∴CE=PC,∠E=60°; 又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP, ∴∠BCE=∠ACP, ∵△ABC、△ECP为等边三角形, ∴CE=PC,AC=BC, ∴△BEC≌△APC(SAS), ∴PA=BE=PB+PC.(2分) (2)过点B作BE⊥PB交PA于E. ∵∠1+∠2=∠2+∠3=90° ∴∠1=∠3, 又∵∠APB=45°, ∴BP=BE,∴; 又∵AB=BC, ∴△ABE≌△CBP, ∴PC=AE. ∴.(4分) (3)答:; 证明:过点B,作BM⊥AP,在AP上截取AQ=PC, 连接BQ,∵∠BAP=∠BCP,AB=BC, ∴△ABQ≌△CBP, ∴BQ=BP. ∴MP=QM, 又∵∠APB=30°, ∴cos30°=, ∴PM=PB, ∴ ∴(7分)
复制答案
考点分析:
相关试题推荐
已知二次函数y=2x2-4x+5,
(1)将二次函数的解析式化为y=a(x-h)2+k的形式.
(2)将二次函数的图象先向右平移2个单位长度,再向下平移1个单位长度后,所得二次函数图象的顶点为A,直接写出点A的坐标.
查看答案
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.

manfen5.com 满分网 查看答案
如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,求图中阴影部分的面积(结果保留π).

manfen5.com 满分网 查看答案
如图,正方形ABCD内一点P,PA=1,PD=2,PC=3,如果将△PCD绕点D顺时针旋转90°,能求出∠APD的度数吗?试试看.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.
(1)求证:DC是⊙O的切线;
(2)若AB=2,求DC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.